Changes in gait and EMG when walking with the Masai Barefoot Technique

Jacqueline Romkes *, Christian Rudmann, Reinald Brunner

Laboratory for Gait Analysis Basel, Children's University Hospital Basel, Burgfelderstrasse 101, CH-4012 Basel, Switzerland

Received 8 February 2005; accepted 4 August 2005

Abstract

Background: The Masai barefoot technology® is used as a treatment option within the field of physical therapy to treat leg, back or foot problems. No information, however, is available on how Masai barefoot technology changes gait or muscle activity.

Methods. Twelve healthy subjects underwent 3D gait analysis with simultaneously collecting surface electromyography data of the leg muscles when walking with regular shoes and with Masai barefoot technology-shoes. Before data collection, subjects were trained in Masai barefoot technology. A within-subjects study-design compared walking with regular shoes and Masai barefoot technology.

Findings. With Masai barefoot technology, subjects walked slower with smaller steps. Movement pattern at the ankle showed major changes with increased dorsiflexion angle at initial contact followed by a continuous plantarflexion movement until terminal stance phase. With changed kinematics, alterations in the activity of tibialis anterior and gastrocnemius muscles could be observed. Smaller differences in movement and muscle activity were seen at knee and hip level.

Interpretation. Masai barefoot technology has never been documented in detail concerning changes in movement pattern or muscle activity. This study showed that Masai barefoot technology changes movement patterns, especially at the ankle, and increases muscle activity. It may therefore be a useful training method for strengthening the muscle groups of the lower leg. Knee flexion and electromyographic characteristics around the knee joint are slightly increased and need to be considered in patients with knee problems. Our findings provide critical detailed information on changes compared to walking in regular shoes, but the clinical relevance of those changes remains to be determined.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Masai barefoot technique; MBT; Gait analysis; Electromyography; Physiotherapy

1. Introduction

Masai barefoot technologies® (MBT) developed a training device to strengthen the lower extremity muscles combined with the actual locomotion activity. MBT constructed a shoe with a rounded soft sole in anterior–posterior direction underneath the heel area, providing an unstable base of support with a rocker bottom. The shoes are widely used across Europe but less known around the rest of the world. The theory behind the concept is that the MBT-shoe transforms flat, hard, artificial surfaces into uneven surfaces, simulating the walking action of our barefoot ancestors, thus challenging the muscles to be more active. Within rehabilitation medicine, MBT is used by patients with a wide variety of problems. Problems related to the back (e.g. lower back pain, arthritis, neck problems, osteoporosis) are treated while it is believed that the rocker bottom of the MBT-shoe forces patients to walk more upright. Foot problems (e.g. hallux valgus, clubfoot, flatfoot, heel spur,
Achilles tendonitis) or circulatory problems (e.g. diabetes mellitus) are treated with MBT while it is thought that MBT stimulates the intrinsic musculature of the foot and increases the blood flow. It is also suggested that MBT footwear serves as a proprioceptive tool thereby enhancing ankle stabilizing musculature. Patients are usually informed about MBT by their physiotherapist. MBT is also used by sportsmen and women while it is believed to strengthen their leg muscles by wearing the shoes during their daily activity. Obese people use MBT during walking in order to reduce body fat by enhancing energy expenditure. MBT is also used by healthy people to decrease health risks by integrating MBT in their daily living. No clinical effects of MBT, however, have been supported scientifically.

Although MBT has not been scientifically investigated, two previous studies have evaluated a similar shoe with an unstable rocking base of support. Each study investigated a different aspect. Attinger Benz et al. (1998) compared kinematic and kinetic parameters in non-symptomatic subjects walking with missing-heel shoes (an earlier model of MBT) and with a normal shoe-sole geometry. A reduced walking speed was found with the missing-heel shoes as a consequence of a shorter stride length combined with an increased cadence. The walking pattern differed drastically at the ankle joint, resulting in a sudden rocking motion at the heel followed by a significantly prolonged and augmented dorsiflexion. No differences were found at the level of the knee and hip joints. Kinetic analysis showed differences in the ground reaction force parameters until mid-stance. Attinger Benz et al. concluded that depending on the individual situation, these changes may be either (a) of considerable therapeutic value or (b) an unnecessary load for passive and/or active structures of the lower limbs and the spine.

Yamamoto et al. (2000), in contrast, examined the physiological and biochemical effects of wearing heelless shoes over a wide range of walking speeds. It was concluded that walking exercise in heelless shoes induced an increase of the calf blood flow at a moderate speed, and increased glycogen metabolism and noradrenaline secretion at a faster speed. The study by Yamamoto et al. did not include any electromyographic (EMG), kinetic or kinematic data but the results could indicate higher muscle activity of the calf muscles.

The purpose of the present study is to investigate how MBT changes the gait pattern and muscle activation. Surface EMG recordings of selected lower extremity muscle groups and three dimensional (3D) gait analyses were made in healthy adult subjects with regular street shoes and with MBT. Because MBT has become a product often used for therapy by physiotherapists and is sold by regular sport stores and orthopaedic shoe-makers, it is important to realize how MBT changes walking pattern and muscle activation.

2. Methods

2.1. Subjects

Twelve healthy subjects, 6 males and 6 females, volunteered to participate in this study (age: 38.6 (SD: 13.2) years, height: 173.3 (SD: 6.3) cm, weight: 77.4 (SD: 12.3) kg). Before data collection, all subjects underwent an instruction session of approximately 1 h by an official MBT-trainer and physiotherapist, followed by a training period of at least 4 weeks to ensure the appropriate MBT-technique. The subjects were asked to wear the shoes as much as possible and use them during daily living activities. All subjects were able to wear the shoes for a full day at the time of testing. On the day of data collection, the participants were screened again to assure the correct technique before data collection. Since the MBT-technique can only be employed with the specially designed sole geometry of the MBT-shoe, it was assumed that walking in regular shoes would not be affected. The subjects were asked to bring their own pair of street shoes normally worn during the day. Exclusion criteria for the shoes were: open-shoes (i.e. slippers, loafers) or high heels of more than 3 cm. A picture of the shoe used for MBT is shown in Fig. 1. The sole is constructed as a Sendersil construction from 12 layers but no tests on the sole material have been conducted for this study.

2.2. Study protocol

The study protocol consisted of 3D-gait analysis and lower extremity muscle activity measured under three conditions. The first condition was barefoot walking to get the subjects used to the testing surroundings. The second and third conditions were walking, wearing the individual regular shoes and the MBT-shoes. The sub-

Fig. 1. Shoe used in the Masai barefoot technology® (MBT).
jects walked at a self-selected speed. Testing continued until a minimum of six trials with clear data sets were collected for each testing condition. Data when walking with regular shoes were compared to data when walking with MBT.

2.3. Gait analysis

3D-gait analysis was made using a six-camera, 50 Hz movement analysis system (VICON 370, Oxford Metrics Ltd., UK). This system incorporated infra-red sensitive solid-state cameras for locating and tracking fixed reflective markers through space. The 15 markers were spheres (diameter 25 mm) covered with retro-reflective tape affixed with double-sided tape to specific landmarks bilaterally of the subject's legs according to the Helen Hayes Marker set described by Kadaba et al. (1990). This marker set included markers on the right and left anterior superior iliac spines, lateral midthigh, lateral midshank, lateral femoral epicondyle, lateral malleolus, second metatarsal head, calcaneus, and one marker on the sacrum. The heel and toe markers were placed on the shoes at the positions best projecting the anatomical landmarks. All other markers remained at the same positions throughout the testing protocol. Height, weight, leg length, widths of the ankles and knees, and tibial torsion were measured for appropriate anthropometric scaling. Joint angle data were expressed in percentage of gait cycle using the Polygon software (Oxford Metrics ltd., UK). A gait cycle starts with initial foot contact and ends with the following ipsilateral initial contact. Statistical analysis was performed to examine the significance of observed differences between peak values of variables at particular points in the gait cycle in the sagittal plane for hip, knee, and ankle joint complex. Since only little pelvic movement is expected, here the mean position over the whole gait cycle was calculated (Perry, 1992). The value for each point of interest was taken from all trials and averaged within subjects.

2.4. EMG measurements

Surface EMG was recorded simultaneously with the 3D-gait analysis. Bipolar Ag/AgCl surface electrode pairs with an electrode diameter of 10 mm and an inter-electrode spacing of 22 mm were placed on the clean shaven skin overlying the medial gastrocnemius, lateral gastrocnemius, tibialis anterior, vastus medialis, vastus lateralis, rectus femoris, and semitendinosus muscles of the subjects preferred leg when hopping. Preference was determined by asking the subject to hop on one leg for 5 m. For electrode placement, the SENIAM (Hermens et al., 1999) recommendations for surface EMG were followed. The ground electrode was placed overlying the tuberosity of the tibia. EMG signals were pre-amplified and band-pass filtered (10–700 Hz) using a Zebris system (Zebris, Tübingen, Germany; amplifiers of Biovision, Wehrheim, Germany) at a sampling rate of 2500 Hz. Initial contact and foot-off were determined using two force plates (Kistler Instrumente AG, Winterthur, Switzerland) embedded in the floor. The next ipsilateral initial contact was determined with the use of a small accelerometer (Biovision) attached to the heel. Force plate and accelerometer data were sampled at the same frequency as the EMG data.

The electromyographic signal was full wave rectified and then the data were time normalised by dividing the gait cycle into 16 equally spaced intervals (Δ1–Δ16). Root mean square values for each muscle signal were calculated for each of these time intervals. For each subject the maximum value of the EMG was calculated when walking barefoot and all other EMG data were expressed as percentage of this maximum value using the MATLAB software package (The MathWorks Inc., Natick, USA).

For all parameters, data of six trials under each condition were averaged for each subject. Paired t-tests were applied to EMG and kinematic data to determine changes between walking with regular shoes and with MBT. The level of significance was set at \(P < 0.05 \).

3. Results

3.1. Time–distance parameters

Time distance parameter results are shown in Table 1. When compared to walking in regular shoes, the cadence \((P = 0.044) \), stride length \((P = 0.008) \), step length \((P = 0.029) \), and walking speed \((P = 0.006) \) were significantly decreased during the MBT condition. Stride time \((P = 0.036) \) and single support \((P < 0.001) \) significantly increased during the MBT condition.

3.2. Kinematic data

No significant differences in the kinematic data from the frontal and transverse planes were found. Figs. 2 and 3 show the mean sagittal movement curves of pelvis, knee joint, hip joint and ankle-joint complex. The results of particular kinematic data and values of the movement curves are presented in Table 2. For the sagittal plane movements, pelvic tilt did not alter when walking with MBT, but subjects had a reduced range of motion (RoM) throughout gait at the hip joint \((48.2° \text{ (SD:} 4.2°) \text{ vs.} 43.0° \text{ (SD:} 6.1°)) \). This was due to a reduction in both peak hip flexion \((42.7° \text{ (SD:} 3.9°) \text{ vs.} 40.0° \text{ (SD:} 4.4°)) \) and peak hip extension \((5.5° \text{ (SD:} 5.2°) \text{ vs.} 3.6° \text{ (SD:} 6.1°)) \). At the knee joint level, RoM was also reduced \((64.6° \text{ (SD:} 4.5°) \text{ vs.} 57.3° \text{ (SD:} 6.6°)) \) with reduction in both peak knee flexion \((67.4° \)
Table 1

<table>
<thead>
<tr>
<th>Time-distance parameters</th>
<th>Reg. shoes</th>
<th>MBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadence (steps/min)</td>
<td>113.7 (12.0)</td>
<td>111.1 (10.6)</td>
</tr>
<tr>
<td>Stride time (s)</td>
<td>1.06 (0.10)</td>
<td>1.09 (0.10)</td>
</tr>
<tr>
<td>Stride length (m)</td>
<td>1.47 (0.10)</td>
<td>1.39 (0.13)</td>
</tr>
<tr>
<td>Step length (m)</td>
<td>0.73 (0.05)</td>
<td>0.70 (0.07)</td>
</tr>
<tr>
<td>Walking speed (m/s)</td>
<td>1.39 (0.15)</td>
<td>1.28 (0.12)</td>
</tr>
<tr>
<td>Single support (%)</td>
<td>0.40 (0.03)</td>
<td>0.42 (0.04)</td>
</tr>
<tr>
<td>Double support (%)</td>
<td>0.26 (0.04)</td>
<td>0.24 (0.03)</td>
</tr>
<tr>
<td>Foot-off (%)</td>
<td>61.7 (1.6)</td>
<td>61.1 (1.1)</td>
</tr>
</tbody>
</table>

Data are mean (SD) for walking with regular shoes and with the Masai barefoot technique (MBT).

* Statistical significant.

Fig. 2. Sagittal plane kinematic data of pelvis and hip. Curves are mean (SD) for walking with regular shoes (---) and with the Masai barefoot technique (MBT) (- - - -); ↑ : statistical significant parameters.

Fig. 3. Sagittal plane kinematic data of the knee and ankle joint complex. Curves are mean (SD) for walking with regular shoes (---) and with the Masai barefoot technique (MBT) (- - - -); ↑ : statistical significant parameters.

Table 2

<table>
<thead>
<tr>
<th>Sagittal plane kinematic data parameters</th>
<th>Reg. shoes (°)</th>
<th>MBT (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvis Mean pelvic tilt</td>
<td>12.0 (3.6)</td>
<td>11.5 (3.6)</td>
</tr>
<tr>
<td>Hip RoM</td>
<td>48.2 (4.2)</td>
<td>43.0 (6.1)</td>
</tr>
<tr>
<td>Peak flexion</td>
<td>42.7 (3.9)</td>
<td>40.0 (4.4)</td>
</tr>
<tr>
<td>Peak extension</td>
<td>5.5 (5.2)</td>
<td>3.6 (6.1)</td>
</tr>
<tr>
<td>Knee RoM</td>
<td>64.6 (4.5)</td>
<td>57.3 (6.6)</td>
</tr>
<tr>
<td>IC flexion</td>
<td>9.7 (3.8)</td>
<td>12.2 (3.4)</td>
</tr>
<tr>
<td>Peak flexion</td>
<td>67.4 (3.3)</td>
<td>63.6 (4.6)</td>
</tr>
<tr>
<td>MS min flexion</td>
<td>2.9 (3.0)</td>
<td>6.5 (4.1)</td>
</tr>
<tr>
<td>Ankle RoM</td>
<td>31.5 (5.3)</td>
<td>34.8 (8.4)</td>
</tr>
<tr>
<td>IC dorsiflexion</td>
<td>2.9 (4.4)</td>
<td>15.0 (4.6)</td>
</tr>
<tr>
<td>TS dorsiflexion</td>
<td>11.6 (4.2)</td>
<td>5.6 (7.2)</td>
</tr>
<tr>
<td>Peak dorsiflexion</td>
<td>11.8 (4.2)</td>
<td>15.8 (4.3)</td>
</tr>
<tr>
<td>Peak plantarflexion</td>
<td>19.7 (6.0)</td>
<td>19.0 (6.0)</td>
</tr>
</tbody>
</table>

Data are mean (SD) in degrees; RoM: range of motion; IC: initial contact; min: minimum; TS: terminal stance; MS: mid stance.

* Statistical significant.
ing regular shoes to 15.0 (SD: 4.6) with MBT. With a continuous plantarflexion movement, the dorsiflexion angle decreased at terminal stance from 11.6° (SD: 4.2°) with regular shoes to 5.6° (SD: 7.2°) with MBT. RoM did not change throughout the gait cycle.

3.3. EMG

Data of the muscle activities are shown in Fig. 4. Compared to walking with regular shoes, tibialis anterior muscle activity was decreased in the first 0–12.5%

Fig. 4: Electromyographic data when walking with regular shoes and with the Masai barefoot technique (MBT). Curves are mean (SD) for walking with regular shoes (---) and with the Masai barefoot technique (MBT) (---).
of the gait cycle, i.e. initial contact and loading response phase, and increased during the whole swing phase of gait with MBT. For the antagonist muscles, gastrocnemius medialis and lateralis, the level of activity was increased from terminal swing phase until midstance. The vastus medialis and lateralis muscle groups showed elevated levels of activity starting at mid-stance phase to toe-off. The rectus femoris muscle showed elevated activity in mid-stance phase and reduced activity in stance-to-swing transition period. Activity of the semitendinosus muscle did not show any alterations when walking with MBT compared to walking with regular shoes.

4. Discussion

MBT is a special walking technique with a specially designed shoe. MBT is used by a wide range of people: patients with foot, leg, or back problems, sportsmen, and healthy people. Because MBT has become a product often used for therapy by physiotherapists but is also sold by regular sport stores and orthopaedic shoe-makers, it is important to realize how MBT changes walking pattern and muscle activation. As no such information was available, this study investigated the changes in walking pattern and muscle activity when walking with MBT compared to regular shoes. With MBT, movement pattern around the ankle joint showed major changes. Dorsiflexion angle at initial contact was increased and followed by a continuous plantarflexion movement. With these changes, muscle activity of tibialis anterior and the gastrocnemius muscles altered accordingly. Smaller alterations in movement and muscle activity were seen at knee and hip level and subjects walked slower with smaller steps.

Any particular speed can be achieved by a combination of a certain step length and cadence. In this study, the subjects were free to choose their own comfortable walking speed. With MBT, subjects walked significantly slower due to a smaller stride length as well as a slight reduction in cadence. It is likely that part of the changes in the kinematic data at the hip, i.e. reduced peak hip flexion at initial stance and range of motion over the gait cycle, are due to this decrease in stride length (Messier et al., 1992; Van der Linden et al., 2002). The findings of this study agree with Attinger Benz et al. (1998) who looked at kinematic and kinetic parameters in non-symptomatic subjects walking with missing-heel shoes, i.e. a previous model of the shoe used in this study, and with a normal shoe-sole geometry. Although it is interesting that walking speed decreases with MBT, it would also be interesting to know how subjects would increase their walking speed with MBT to the speed achieved with regular shoes and if kinematic data of the hip would also increase and normalise.

When walking with MBT, both the gait pattern and muscle activity changed. Premature activation of the gastrocnemius muscles started in terminal swing phase. The activity of the gastrocnemius muscles during terminal swing up to toe-off is necessary for the continuous plantarflexion movement with MBT. The activity of the gastrocnemius muscles activation at the end of swing phase and early stance phase coincides with antagonistic activity of the tibialis anterior muscle. This co-contraction may contribute to stabilization of the ankle joint upon heel-strike and the improvement of foot stability during early stance phase. The soft heel together with the thicker shoe-sole, which results in a raised position of the ankle joint above the floor, makes the MBT-shoe less stable. The co-contraction of the gastrocnemius and tibialis anterior muscles compensates for this instability. The increased muscle activity of the tibialis anterior muscle during swing phase is necessary for the increased dorsiflexion movement compared to walking in regular shoes.

Activity of the vastus medialis and lateralis muscle groups was increased with MBT during most of the stance phase. Knee flexion in this part of the gait-cycle also increased with less extension of the knee during mid-stance phase. Walking with this slight increase of flexion at the knee joint could increase the load on this joint and therefore care must be taken in patients with knee problems when prescribing MBT. Although activity of the rectus femoris muscle was also increased during this period of the gait cycle, similar to the vasti muscles, this is actually believed to be cross-talk activity from the vasti muscles. A study by Nene et al. (2004) comparing surface and fine wire EMG of the rectus femoris muscle during gait, clearly showed that, with the fine wire method, this muscle was only active in the stance-to-swing transition period. A burst of EMG activity recorded at initial contact by the surface signal but not by the fine wire EMG, was due to cross-talk from vastus intermedius. It was concluded that rectus femoris is active only during stance-to-swing transition and the activity during swing-to-stance transition, as described in the literature, is very probably due to cross-talk.

5. Conclusion

In conclusion, this study showed a change in gait pattern when walking with MBT compared to walking with regular shoes. It has been shown that with kinematic changes at the ankle-joint-complex, muscle activity of the gastrocnemius and tibialis muscles increased and the co-contraction of these muscles could provide for stability. MBT could therefore be used as a training method to strengthen the leg muscles. MBT should be used cautiously in patients with knee problems since it was shown that subjects walked with slightly more flex-
ion during stance phase accompanied with increased muscle activity of the vastus medialis and lateralis. Activity of the rectus femoris muscle reduced during the stance-to-swing transition period.

References

Cellulite Study – The Efficacy of Masai Barefoot Technology as an Auxiliary Therapeutic Measure for Cellulite

(N. Linde, C. Stegen, CH)

A study carried out in collaboration with Lipoclinic Swiss and Swiss Masai Vertrieb AG.

Internal Report.

Nikolaus Linde, MD, Cordula Stegen, Graduate Sports Scientist

July 2005

Publication: unpublished.

MBT Model: Sole 2004

ABSTRACT

While MBT is firmly established in the European market as a so-called health shoe for leg and back problems, it is popular in the Anglo-Saxon world as an anti-cellulite lifestyle shoe. Because of press reports in major, well-known magazines and due to celebrities wearing MBT, MBT is considered the latest secret weapon in the fight against cellulite. The time was therefore ripe to conduct an initial study on the subject, either to provide evidence for this effect or to reject the claim.

In this initial study, subjects were selected who exercised little or not at all and worked in sedentary occupations (office work). The participants were asked to integrate MBT into their daily lives. A total of 23 subjects were selected for the study. After an initial examination and introduction into the use of MBT, the women received their MBT. They were asked to wear it daily and for as long as possible, including at work. In addition, they monitored the effect of their MBT on their cellulite in the buttocks-thigh region. In the context of this study, it was not possible to standardise individual lifestyles. Thus, caution is advised when interpreting the results.

Surprisingly, the average proportion of fat (Body Impedance Analyse) decreased significantly (p = 0.003) during the short wearing period of only 4 weeks. Similarly, body weight and body mass index tended to decrease during the study (not highly significant). These pleasant results parallel the experiences of many MBT wearers and those made and published by Anglo-Saxon journalists. Whether this effect can be fully attributed to
the increased muscular activity that has been documented for Masai Barefoot Technology, or if the subjects were motivated by their MBT to increase running performance and movements, cannot be conclusively answered at present. However, the results are very interesting and motivating.

Interestingly, about 2/3 of the subjects reported a markedly improved tissue condition in the area of the cellulite. Furthermore, increased well-being and an improved quality of life were found. Almost 63% would recommend MBT for the treatment of cellulite to their best friend.

In contrast to the positive reactions expressed with regard to tissue condition, very few of the subject noticed a visual improvement when she had to evaluate herself in the mirror – this was the case even though the before-after photos showed a very different, clearly improved, skin tissue. A likely explanation for this phenomenon is that, on the one hand, it is not easy to visually assess the region of one’s own buttocks and thighs in the mirror and, on the other hand, it is difficult to notice changes when these occur gradually and in small steps. The objective inspection of the pictures showed that visually a marked improvement of the skin condition had occurred. Of course, complete disappearance of the cellulite during this short study period could not be achieved.

![Status before wearing MBT](image)

The other, long-established phenomena of MBT, such as enhanced mobility and posture were once again confirmed by the subjects. Moreover, improvements of concomitant symptoms, such as back pain, were confirmed as well. Tired and cold feet also showed marked improvements.

In summary, MBT appears to achieve definite improvements in the treatment of cellulite within a short period of time. The hypothesis H1 is thus confirmed.
Increased Metabolism while standing with unstable shoe construction.
(H. Hoppeler et al., CH)

University of Berne, Swiss Health and Performance Laboratory
Berne, Switzerland
Prof. Dr. Hans H. Hoppeler, Benedikt A. Gasser, Adrian M. Stäuber

September 2008

Publication: submitted for publication

MBT Model: Sole 2005

ABSTRACT
This research investigated the extent to which wearing footwear with unstable sole construction can stimulate metabolic activity of the muscles in the lower extremities. The study examined whether, and how heavily, wearing an MBT shoe (Masai Barefoot Technology) influences energy consumption in everyday life. Oxygen consumption and heart rate were examined for differences between the MBT shoe, a conventional running shoe of equal weight, and barefoot. Female (n = 6) and male (n = 10) persons (29.8 ± 6.8 years) were recruited. The subjects completed standing trials in the laboratory with running shoes and MBT shoes to assess possible differences in the footwear when standing calmly in terms of metabolism. When standing calmly for two lots of 6 minutes, a significantly higher oxygen intake was recorded for the MBT shoe compared to the running shoe (p < 0.01). The increase in oxygen consumption was on average 9.3 ± 5.2 %.
Oxygen consumption and heart rate were also analysed in the laboratory on the treadmill at different speeds (4 to 7 km/h) and at different gradients (horizontal, +10 and -10%). The MBT shoe data was compared to a control shoe of equal weight, and barefoot. Female (n = 5) and male (n = 11) persons (32.8 ± 7.5 years) were again recruited. For an n of 16, no significant increase in oxygen consumption or heart rate was recorded between an MBT shoe and a control shoe of equal weight (p-values depending on
speed/gradient between 0.12 - 0.83 for oxygen consumption and 0.35 - 0.89 for heart rate).

The results between an MBT shoe and barefoot (horizontal, 5 km/h) were a different story. With the MBT shoe, a $4.4 \pm 8.2\%$ higher oxygen intake ($p < 0.01$) and a $3.6 \pm 7.3\%$ higher heart rate ($p < 0.01$) were recorded compared to barefoot.

A field test on a 400-metre track was also conducted with 5 male subjects (29.7 ± 3.1 years). No increased oxygen consumption was recorded between the MBT and running shoes. The same observation applied for heart rate. On the other hand, between the MBT shoe and barefoot, a tendency towards an increased oxygen consumption with MBT ($p < 0.1$) was recorded, but not for heart rate ($p = 0.25$).

It appears that the unstable sole construction of the MBT causes an increased metabolism particularly when standing, meaning the basic caloric metabolic rate also increases when wearing the shoe regularly in everyday life. Although the change only affects approximately 20 kJ/h, the cumulative effects could very much be of relevance to individual persons over 1 year.

A functional advantage can be expected through sensorimotor activation of the small foot muscles and lower leg muscles, particularly the type I fibres. This would lead to additional muscular joint stabilisation and encourage balance.